Raise awareness of environmental health issues in order to better protect our children and future generations.

EMF Studies

02 December 2014

EMF Studies - December 2014 Science Update from Powerwatch

Due to the large number of posts on this blog, we are reproducing abstracts of "particularly important or relevant" EMF studies, signaled out by Powerwatch. Other sites listing studies include:

Collection of over 6,000 studies showing biological impacts from EMF pollution: http://justproveit.net/studies

2012 BioInitiative Report – References 1,900 new studies showing biological impacts from EMF: http://www.bioinitiative.org/

Thousands of studies showing links between EMF pollution and biological effects: http://www.powerwatch.org.uk/science/studies.asp

December 2014 - Science Update Powerwatch, 2 December 2014

1. P Reale M et al, (August 2014) Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration, PLoS One. 2014 Aug 15;9(8):e104973. doi: 10.1371/journal.pone.0104973. eCollection 2014 [View Author's abstract conclusions] [View on Pubmed]

Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-), which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT activity and a rise in O2(-) levels. Together these studies support the further evaluation of ELF-EMF exposure in cellular and in vivo preclinical models to define mechanisms potentially impacted in humans.

3. P Marjanovic AM et al, (August 2014) Cell oxidation-reduction imbalance after modulated radiofrequency radiation, Electromagn Biol Med. 2014 Aug 13:1-6. [Epub ahead of print] [View Author's abstract conclusions] [View on Pubmed]

The aim of this study was to evaluate an influence of modulated radiofrequency field (RF) of 1800 MHz, strength of 30 V/m on oxidation-reduction processes within the cell. The assigned RF field was generated within Gigahertz Transversal Electromagnetic Mode cell equipped by signal generator, modulator, and amplifier. Cell line V79, was irradiated for 10, 30, and 60 min, specific absorption rate was calculated to be 1.6 W/kg. Cell metabolic activity and viability was determined by MTT assay. In order to define total protein content, colorimetric method was used. Concentration of oxidised proteins was evaluated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) marked with fluorescent probe 2',7'-dichlorofluorescin diacetate were measured by means of plate reader device. In comparison with control cell samples, metabolic activity and total protein content in exposed cells did not differ significantly. Concentrations of carbonyl derivates, a product of protein oxidation, insignificantly but continuously increase with duration of exposure. In exposed samples, ROS level significantly (p < 0.05) increased after 10 min of exposure. Decrease in ROS level was observed after 30-min treatment indicating antioxidant defence mechanism activation. In conclusion, under the given laboratory conditions, modulated RF radiation might cause impairment in cell oxidation-reduction equilibrium within the growing cells.

4. P Chiu CT et al, (August 2014) Mobile phone use and health symptoms in children, J Formos Med Assoc. 2014 Aug 9. pii: S0929-6646(14)00207-1. doi: 10.1016/j.jfma.2014.07.002. [Epub ahead of print] [View Author's abstract conclusions] [View on Pubmed]

This study was designed to investigate the mobile phone (MP) use for talking in relation to health symptoms among 2042 children aged 11-15 years in Taiwan. A nationwide, cross-sectional study, using the computer assisted telephone interview (CATI) technique, was conducted in 2009 to collect information on children's utilization of MPs and the perceived health symptoms reported by their parents. The overall prevalence of MP use in the past month was estimated at 63.2% [95% confidence interval (CI) = 61.1-65.3%]. MP use was associated with a significantly increased adjusted odds ratio (AOR) for headaches and migraine (1.42, 95% CI = 1.12-1.81) and skin itches (1.84, 95% CI = 1.47-2.29). Children who regularly used MPs were also considered to have a health status worse than it was 1 year ago (β = 0.27, 95% CI = 0.17-0.37). Although the cross-sectional design precludes the causal inference for the observed association, our study tended to suggest a need for more cautious use of MPs in children, because children are expected to experience a longer lifetime exposure to radiofrequency electromagnetic fields (RF-EMF) from MPs.

5. P Liu DD et al, (June 2014) Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release, J Cell Mol Med. 2014 Jun;18(6):1060-70. doi: 10.1111/jcmm.12250. Epub 2014 Feb 18 [View Author's abstract conclusions] [View on Pubmed]

Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 µM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release.

6. P Turner MC et al, (September 2014) Occupational exposure to extremely low-frequency magnetic fields and brain tumor risks in the INTEROCC study, Cancer Epidemiol Biomarkers Prev. 2014 Sep;23(9):1863-72. doi: 10.1158/1055-9965.EPI-14-0102. Epub 2014 Jun 16 [View Author's abstract conclusions] [View on Pubmed]

Occupational exposure to extremely low-frequency magnetic fields (ELF) is a suspected risk factor for brain tumors, however the literature is inconsistent. Few studies have assessed whether ELF in different time windows of exposure may be associated with specific histologic types of brain tumors. This study examines the association between ELF and brain tumors in the large-scale INTEROCC study.

Cases of adult primary glioma and meningioma were recruited in seven countries (Australia, Canada, France, Germany, Israel, New Zealand, and the United Kingdom) between 2000 and 2004. Estimates of mean workday ELF exposure based on a job exposure matrix were assigned. Estimates of cumulative exposure, average exposure, maximum exposure, and exposure duration were calculated for the lifetime, and 1-4, 5-9, and 10+ years before the diagnosis/reference date. There were 3,761 included brain tumor cases (1,939 glioma and 1,822 meningioma) and 5,404 population controls. There was no association between lifetime cumulative ELF exposure and glioma or meningioma risk. However, there were positive associations between cumulative ELF 1 to 4 years before the diagnosis/reference date and glioma [odds ratio (OR) = 90th percentile vs. < 25th percentile, 1.67; 95% confidence interval (CI), 1.36-2.07; PLinear trend < 0.0001], and, somewhat weaker associations with meningioma (OR = 90th percentile vs. < 25th percentile, 1.23; 95% CI, 0.97-1.57; PLinear trend = 0.02). Results showed positive associations between ELF in the recent past and glioma. Occupational ELF exposure may play a role in the later stages (promotion and progression) of brain tumorigenesis.

15. P Zhu H et al, (August 2014) Effects of extremely low frequency electromagnetic fields on human fetal scleral fibroblasts, Toxicol Ind Health. 2014 Aug 21. pii: 0748233714545837. [Epub ahead of print] [View Author's abstract conclusions] [View on Pubmed]

This study investigated the effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human fetal scleral fibroblasts (HFSFs). HFSFs were subjected to 50 Hz artificial ELF-EMFs generated by Helmholtz coils with 0.1, 0.2, 0.5, and 1.0 mT field intensities for 6 to 48 h. The viability and factors involved in scleral structuring of HFSFs were determined. The growth rate of HFSFs significantly decreased after only 24 h of exposure to ELF-EMFs (0.2 mT). The messenger RNA (mRNA) expression of collagen type I (COL1A1) decreased and expression of matrix metalloproteinase-2 (MMP-2) increased significantly. There was a decrease in tissue inhibitor of MMP-2 mRNA levels between treated and control cells only at the 1.0 mT intensity level. Transforming growth factor beta-2 mRNA increased in exposed cells, and, simultaneously, fibroblast growth factor-2 mRNA levels decreased. The protein expressions of COL1A1 and MMP-2 were also significantly altered subsequent to exposure (p < 0.05). This study shows that ELF-EMFs had biological effects on HFSFs and could cause abnormality in scleral collagen.

16. - Vila J et al, (June 2014) Development of a source-based approach to assessing occupational exposure to electromagnetic fields in the INTEROCC study Development of a source-based approach to assessing occupational exposure to electromagnetic fields in the INTEROCC study, Occup Environ Med. 2014 Jun;71 Suppl 1:A35-6. doi: 10.1136/oemed-2014-102362.110 [View Author's abstract conclusions] [View on Pubmed]

Exposure to electromagnetic fields (EMF) has become ubiquitous in modern life and concern has increased regarding possible associated health effects. To date, assessment of occupational exposure has relied on job-exposure matrices, with exposure estimates for very broad occupational categories. To move EMF research forward, a new approach was necessary. A source-based strategy, incorporating detailed information on tasks, equipment used and work organisation could allow a more individualised exposure assessment. Information on occupational histories and sources of EMF was collected as part of the INTERPHONE-INTEROCC study, providing an opportunity to assess occupational EMF exposure by assigning exposure to each source used. A source-exposure matrix (SEM) was developed based on measurements identified in the literature and estimates obtained through experts' elicitation, for sources without available measurements. This paper focuses on the SEM development methodology to ensure the quality and representativeness of the estimates. Estimates of exposure for 138 EMF sources were obtained from measurements (1424 aggregated records) extracted from 71 papers and hygiene reports (1974-2013). For each source, exposure was calculated by frequency band and dosimetry type, as the arithmetic and geometric means of all measurements identified. Standard deviations were included in order to characterise the variability of the estimates. A source-exposure matrix has been constructed for the most common sources of EMF in the workplace, based on the responses to the INTERPHONE-INTEROCC study questionnaire. This database currently represents the most comprehensive source of information on occupational EMF exposure and is available on request to researchers.

17. P Isaac Aleman E et al, (September 2014) Effects of 60 Hz sinusoidal magnetic field on in vitro establishment, multiplication, and acclimatization phases of Coffea arabica seedlings, Bioelectromagnetics. 2014 Sep;35(6):414-25. doi: 10.1002/bem.21859. Epub 2014 Jul 17 [View Author's abstract conclusions] [View on Pubmed]

The influence of extremely low frequency electromagnetic fields on net photosynthesis, transpiration, photosynthetic pigment concentration, and gene expression of ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit (RBCS1), during in vitro establishment, in vitro multiplication and acclimatization phases of coffee seedlings were investigated. Untreated coffee plants were considered as control, whereas treated plants were exposed to a 60 Hz sinusoidal magnetic field of 2 mT of magnetic induction during 3 min. This magnetic field was generated by an electromagnet, connected to a wave generator. The results revealed that magnetically treated plants showed a significant increase in net photosynthesis (85.4% and 117.9%, in multiplication and acclimatization phases, respectively), and in photosynthetic pigment concentration (66.6% for establishment phase, 79.9% for multiplication phase, and 43.8% for acclimatization phase). They also showed a differential RBCS1 gene expression (approximately twofold) and a decrease of transpiration rates in regard to their control plants. In conclusion, the findings suggest that the application of 60 Hz magnetic field to in vitro coffee plants may improve the seedlings quality by modifying some photosynthetic physiological and molecular processes, increasing their vigor, and ensuring better plant development in later stages.


No comments:

Post a Comment